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ABSTRACT
Proving that particular methods within a code base are functionally
pure—deterministic and side-effect free—would aid verification of
security properties including function invertibility, reproducibility
of computation, and safety of untrusted code execution. Until now
it has not been possible to automatically prove a method is func-
tionally pure within a high-level imperative language in wide use,
such as Java. We discuss a technique to prove that methods are
functionally pure by writing programs in a subset of Java called
Joe-E; a static verifier ensures that programs fall within the sub-
set. In Joe-E, pure methods can be trivially recognized from their
method signature. To demonstrate the practicality of our approach,
we refactor an AES library, an experimental voting machine im-
plementation, and an HTML parser to use our techniques. We
prove that their top-level methods are verifiably pure and show
how this provides high-level security guarantees about these rou-
tines. Our approach to verifiable purity is an attractive way to
permit functional-style reasoning about security properties while
leveraging the familiarity, convenience, and legacy code of imper-
ative languages.

Categories and Subject Descriptors
D.2.3 [Coding Tools and Techniques]; D.2.4 [Software/Program
Verification]

General Terms
Security, Languages, Verification

Keywords
Pure functions, determinism, static analysis, object-capabilities

1. INTRODUCTION
Critical real-world programs often have high-level security and

privacy requirements expressed in terms of reproducibility, invert-
ibility, non-interference, or containment of untrusted code. We
would like to verify these properties given the programs’ source
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code, but this task is difficult in the languages commonly used
to write real-world programs. These imperative languages permit
side effects and data dependencies that are difficult to reason about.
Purely functional languages, in which methods obey the semantics
of mathematical functions, make reasoning about effects and in-
formation flow easier, but have not gained the popularity and code
base of more traditional imperative languages. We present a tech-
nique for implementing verifiably functionally pure methods in im-
perative languages. To be functionally pure, a method must satisfy
two critical properties1:

First, it must have no side effects. For a computational method
to be free of side effects, its execution must not have any visible
effect other than to generate a result. A method that modifies its
arguments or global variables, or that causes an external effect like
writing to disk or printing to the console, is not side-effect free.

The second property is functional determinism: the method’s be-
havior must depend only on the arguments provided to the method.
The method must return the same answer every time it is invoked
on equivalent arguments, even across different executions of the
program. A simple example would be a method to upper-case a
string: every time it is given a string containing the word “foo”, it
will return a string containing “FOO”. Many methods do not satisfy
this criterion, including ones whose behavior depends on the time
of day, the amount of free memory, or whether a specific flag was
present on the command line.

Electronic voting machines are one important application with
a number of security requirements amenable to enforcement using
functional purity. These machines are single-purpose computers
running custom software designed to allow the voter to select his
or her preferred candidates and to record the selections. Given the
importance of these machines to our democracy and concerns over
their trustworthiness, it would be useful if we could prove aspects
of their operation correct.

For example, we argue that voting machines should be designed
to ensure that each voter’s voting experience will be a determin-
istic function of the ballot definition and that voter’s actions. For
a particular set of voter actions, the system should always present
the same screens and record the same selections, independent of
previous voters’ interactions with the voting machine. Leaking any
information about previous sessions could violate earlier voters’
privacy and could create a conduit for a malicious voter to interfere
with subsequent voters. Also, voting sessions should have no side
effects; their only legitimate effect should be to return the voted
ballot. Functional purity can help verify these security properties.

As another example, voting machines must serialize and possibly
encrypt the voter’s selections when writing them to stable storage.

1More formal definitions of these two properties are provided in
Section 3.



This data will be read and tallied at a future date, likely on a dif-
ferent machine. In order for the voter’s choices to be counted as
they were cast, we must be certain that the reconstituted votes will
match the originals. We propose a fail-stop check on the encoding
process: the machine writing the data should decode the serialized
output and verify that it matches the original vote selection data
structure. If the decode method is deterministic, this check ensures
that this data structure will be correctly reconstructed later when
the votes are counted. If the serialization and deserialization rou-
tines are also side-effect free, they can be removed from the trusted
computing base, as the check verifies their correctness as needed.

In general, verifying that a computation will be deterministic
and free of side effects is a difficult task that typically requires
careful examination of a program’s entire source code. Verifying
side-effect freeness requires verifying that the computation does
not modify the state of any parameters or global state and does
not affect the outside world in any observable way (e.g., writing
to an I/O device). Verifying determinism requires ensuring that the
method does not read any information that may differ between dif-
ferent calls. Checking the latter property first requires ensuring that
anything that is read by the method isn’t changed elsewhere in the
program. Also, we must ensure that any value read by the method
doesn’t depend on environmental factors that could differ between
executions of the program.

We can see that the concepts of determinism and side-effect free-
ness are related, in that they both restrict access to state created out-
side the method. We use a unified approach to achieving both goals,
based on object capabilities [18]. Specifically, we introduce and
define the concept of deterministic object-capability languages, in
which the ability to cause side effects and to observe data that varies
between executions is conveyed by explicit object references that
are propagated only by explicit program statements.

A key advantage of our approach is that it supports modular rea-
soning about purity, side effects, and determinism. In particular, a
programmer can tell whether a particular method is pure simply by
looking at its type signature. In our system, if all parameter types
are immutable, then the method can be guaranteed to be pure. This
allows purity specifications to be part of the contract of a method
and simplifies the task of reasoning about program behavior. The
body of a pure method has no additional constraints, permitting
wide flexibility in how it is implemented. In particular, pure meth-
ods can call impure methods, and vice versa. In short, pure and
impure code can easily be mixed; the majority of a program can be
imperative, with purity still being enforced where needed.

We briefly describe how the Joe-E subset of Java satisfies the re-
quirements of a deterministic object-capability language, and how
it can be used to write methods that can be easily recognized as ver-
ifiably pure. In order to evaluate our approach to verifiable purity,
we ported three legacy libraries (an AES implementation, serializa-
tion logic from an experimental voting machine implementation,
and an HTML parser) to the Joe-E subset, and refactored them so
that their top-level methods could be verified as pure.

As Joe-E was not explicitly designed to ease migration of legacy
code, we found that the task of modifying existing code to satisfy
the Joe-E restrictions was at times difficult. Certain recurring pat-
terns account for much of this difficulty; code that avoids these
patterns is much easier to port. Refactoring methods so they could
be verified pure was generally harder than just porting to the Joe-E
subset, and sometimes required changes to data structures and in-
terfaces. We therefore recommend our approach primarily for use
with new code that is designed with this approach to purity in mind.

We view the contributions of this work as follows:

• We enumerate several applications where the ability to verify
that particular blocks of code are pure makes it easy to verify
interesting high-level application-specific properties.
• We describe a class of imperative programming languages in

which it is easy to verify purity.
• We introduce Joe-E’s enforcement of determinism and we

show how this enables verifiable purity in Java.
• We share our experience refactoring legacy codebases so that

they can be verified as pure, thus attaining useful security
guarantees.
• Based on this practical experience, we identify programming

patterns that are well-suited to writing verifiably pure sys-
tems as well as anti-patterns that make this task difficult.

2. APPLICATIONS
We argue that functional purity has many applications in security

and reliability. Purity is a helpful tool for building more modular
programs that are easier to reason about, and this makes it easier
to verify many kinds of security properties. Languages and pro-
gramming idioms that make this property easy to achieve and ver-
ify may be of benefit to programmers, especially those aiming to
write maintainable, auditable, and understandable code.

2.1 Reproducibility
Consider the following scenario, inspired by [1]: Mallory gen-

erates a PDF file containing a contract for Alice to electronically
sign. Mallory constructs this PDF file so that its displayed content
depends on the system date. When viewed in January, the contract
says that Mallory will pay Alice $100; in any other month, the con-
tract says that Alice will pay Mallory $1,000. Suppose Alice reads
and electronically signs the contract on January 1, and returns the
signed contract to Mallory. On February 1, Mallory presents the
signed contract to a judge, and the judge orders Alice to pay Mal-
lory $1,000.

The problem is that the computation that renders the text is not
deterministic. The behavior of the PDF viewer depends on other
factors aside from its input, the bits of the document file. This
attack could not succeed if the PDF viewer’s computation was a
pure function of the input file. If we could verify the purity of the
viewer, we would be assured that Mallory’s attack will fail.

This is an example of a TOCTTOU vulnerability. Whenever we
compute a result that is checked, and then recompute it later when
it is used, we must be careful to ensure that the computation is re-
producible. Pure functions are useful for this, because determinism
ensures reproducibility and makes explicit the inputs a computation
may depend upon.

Another application is in transactional systems. Suppose we take
periodic checkpoints of an application and log all its inputs. If
the application is deterministic, then we can recover from crashes:
reincarnating the application and replaying from an old snapshot
and input trace will always reproduce the same behavior that the
previous incarnation of the application followed. This eliminates
the need to checkpoint every intermediate state. It also allows a
replicated system to transparently fail over to a backup system that
is receiving the same stream of input events.

2.2 Invertibility
The serialization example given in the introduction is representa-

tive of a class of applications that have a matched pair of algorithms
(Encode, Decode) for which it is intended that Decode is an in-
verse of Encode. Specifically, the inverse property should hold:
for all x, Decode(Encode(x)) should yield some output x′ that is
functionally equivalent to x. To ensure the original x will be re-



coverable in the future, this has to hold even if the invocation of
Decode takes place at some later time on a different machine.

Purity helps support fail-stop enforcement of this property, in
which errors are detected at runtime but before any harmful conse-
quences have taken place. One can test Encode(x) at runtime to
ensure that it will be decoded correctly by Decode:

y := Encode(x)

abort if x != Decode(y)

If Decode is purely functional, its determinism ensures that the
check can be performed at any time and will accurately reflect
whether the message can be correctly decoded in the future. Also,
if Decode is side-effect free, adding this check to existing code
won’t break the program.

This approach applies to, e.g., serialization and deserialization,
encryption and decryption, and compression and decompression.
In many such applications, it is better to fail and warn the user than
it is to proceed and lose data. If this pattern is used to ensure that
all data that is encoded can be recovered, neither the encoder nor
decoder need to be trusted correct in order to establish the property
that data is never lost or corrupted.

Formally verifying the correctness of serialization and deserial-
ization with static analysis is a difficult task. Serialization and de-
serialization typically involve walking a (potentially cyclic) object
graph, and thus inevitably implicate complex aliasing issues, which
is known to make static analysis difficult. Therefore, purity seems
better-suited to this task than classical approaches.

Deterministic functions can also be used for enforcement of more
complex functional relations than invertibility. The exokernel Xok’s
stable storage system uses what the authors call a UDF (untrusted
deterministic function) for each type of metadata disk block (e.g.,
inodes) to translate the set of blocks referenced by the metadata
into a form recognized by the kernel [13]. The determinism of this
function allows Xok to verify that metadata can only claim own-
ership of the correct set of disk blocks. This is done by verifying,
when the metadata is updated, that the set of blocks claimed by the
new metadata is the same as the set claimed by the old metadata
with the intended change applied. This mechanism is only sound if
the metadata decoding function is known to be deterministic.

2.3 Untrusted code execution
Purity gives us a way to execute untrusted code safely: we first

verify that the untrusted code is pure, and then many useful privacy
and security properties will follow. In particular, the lack of side
effects means that the pure, untrusted computation cannot violate
the integrity of the rest of the program it interacts with2, so pure
code inherently executes in a sandbox.

Purity can also be used to structure programs in a way that re-
duces our reliance upon the correctness of some subset of the code.
If we use a pure method to process (possibly malicious) data from
an untrusted source, and if the output from the pure method is no
more trusted than its input, the method doesn’t need to be trusted
to defend itself from malicious data successfully. Even if a ma-
licious input is able to somehow subvert the proper operation of
that method, at worst it can only influence the result of the pure
computation; it cannot harm the proper operation of the rest of the
program.

Bernstein’s discussion of address-extraction code in sendmail

[4] illustrates these ideas well. The address-extraction code is re-
sponsible for parsing an email message and extracting an email ad-
2Untrusted code can still deplete resources or fail to terminate.
Limits on resource usage or looping would be needed if denial of
service is a concern [22], but that is beyond the scope of this paper.

dress from a particular header. At one point, this code contained a
remotely exploitable vulnerability that allowed an attacker to gain
root by taking control of sendmail. Bernstein proposed an alter-
nate architecture:

Suppose that the same address-extraction code is run under
an interpreter enforcing two simple data-flow rules:

• the only way that the code can see the rest of the system
is by reading this mail message;

• the only way that the code can affect the rest of the
system is by printing one string determined by that mail
message.

The code is then incapable of violating the user’s security
requirements. An attacker who supplies a message that seizes
complete control of the code can control the address printed
by the code—but the attacker could have done this anyway
without exploiting any bugs in the code.

We note that Bernstein’s two conditions are exactly determinism
and side-effect-freeness, so implementing the address-extraction
code as a pure method would provide the desired security benefits.

Determinism allows us to bound what information a pure method
can read—in particular, the method can only observe the value of
objects that are reachable from one of its arguments, but cannot
gain any information about any other data in the program. More-
over, deterministic code cannot listen on covert channels: for in-
stance, any differences in behavior due to timing information or
resource limits would violate the determinism properties. This en-
sures that the untrusted method cannot spy on any sensitive pro-
gram state that was not explicitly provided to it.

Purity also limits the untrusted code’s ability to leak sensitive
information to others through overt channels. It can communicate
to others only through its return value (or thrown exceptions) and
its resource consumption. However, it can transmit over a timing-
or resource-based covert channel to a receiver that is not pure. For
instance, we might download an untrusted tax calculator and verify
that it is pure before executing it. Then even if we type our salary
into it, it cannot leak our salary to others directly, though it may be
able to leak our salary through a covert channel.

Purity may also be useful for application extensions and plugins.
For example, consider an image viewer that, out of the box, sup-
ports only a handful of image formats. It might allow installation
of a plugin for viewing images in a different format only if that plu-
gin is written as a verifiably pure function that, given the contents of
an image file, returns a bitmap to be displayed by the image viewer.
Once verified as pure, any such plug-in could be downloaded and
executed safely; it cannot gain any information about other private
information stored on the system, nor can it corrupt the state of any
other part of the program.3

2.4 Building robust systems
Pure methods are also helpful for writing trustworthy security-

critical code that mediates between untrusted components.
For the purposes of preserving application integrity, pure meth-

ods are always safe to expose to untrusted code. Their functionality
could always be duplicated by the untrusted code itself, so they can-
not pose an additional threat. Pure methods may still be part of the
TCB, but only if their behavior is trusted for semantic correctness,
not because the method is granted privileged access to program in-
ternal state. This is a consequence of the lack of side effects. It
3It should be noted that purity does not eliminate all threats that
the plugin could pose to the program. The invoker of a pure plugin
method must still ensure that only appropriate data is passed to
the plugin and defend against unexpected return values from the
plugin.



is possible, however, that specific instances of immutable objects,
and thus their associated pure methods, might convey confidential
or malicious information. One must still be careful about data flow.

A pure method is automatically “defensively consistent” [18,
§ 5.6], provided that in the absence of malice it provides correct
service to individual clients and provided that each invocation of
the pure method processes information from only a single client.
(An object that serves multiple clients with independent interests
is defensively consistent if, even when one client violates its pre-
conditions, it continues to comply with its specification for other
clients that satisfy its preconditions.) Defensive consistency en-
sures that one malicious client cannot attack other clients who may
rely upon the same pure method.

Bernstein presents an example in which a pure jpegtopnm con-
verter receives a JPEG image from the network, decompresses it,
and outputs a raw bitmap of the image to a user [4]. The “client”
here is the sender of the image, who as an arbitrary remote party, is
untrustworthy and may wish to corrupt or disrupt processing of im-
ages from other sources. A defensively consistent implementation
would thwart such attacks by continuing to provide correct conver-
sion of all images originating from other senders, even if one sender
sends malformed data with the intent to exploit the converter. The
purity of the converter ensures defensive consistency because it al-
lows one to know that each image is converted independently from
any others, preventing a malformed image from affecting the pro-
cessing of other images.

2.5 Bug reduction
Pure functions can help us eliminate certain classes of bugs. Of

course, anything that reduces the number of bugs in security-critical
code helps security.

A pure computation is automatically thread-safe, requiring no
locks, and can always be run in parallel with other computations
without risk of interference. Determinism guarantees that concur-
rent operations cannot disrupt its correct execution, and the lack of
side effects means that it cannot disrupt other computations.

Reproducibility is particularly useful when debugging and test-
ing applications. It is often the case with modern applications that
bugs are discovered in the wild rather than during testing, due to
novel configurations that were not considered during testing. In
many cases, it can be difficult to reproduce the bug as there are a
number of hidden variables that cause the behavior of a program to
differ between runs. If a method is pure, any failure of the method
will be reproducible given the same well-defined, bounded set of
inputs. This known set of data can be collected and used to repro-
duce the bug for the developer, who can then fix the program.

Deterministic functions can also make testing more effective. If
the computation is deterministic, we only need to cover any par-
ticular input once; on the other hand, if the computation is nonde-
terministic, it may conceal bugs that trigger nondeterministically,
so it is difficult to know whether we have tested all possible be-
haviors. For instance, Bernstein cites dealing with nondeterminis-
tically triggered error cases as one challenge in testing qmail, and
proposes that testing would have been easier if the code had been
structured as a purely functional computation plus a simple wrap-
per that interacts with the environment (so that the wrapper can be
easily mocked in testing) [4]. Verifiable purity would enable de-
velopers to check that this discipline was followed correctly and
preserve it under maintenance.

2.6 Assertions and Specifications
It is widely accepted that assertions should be side-effect free.

If evaluating the assertion condition causes no side effects, a pro-

gram that always satisfies the assertion will behave the same way
whether the assertion is enabled or disabled. This restriction could
be checked by a lint-type tool that would warn about potentially
impure assertions.

In applications where assertions are used for debugging, it is also
helpful to know that the assertion condition is deterministic. If a
deterministic assertion succeeds, we know that it will not fail on
another run of the program due to dependence on seemingly unre-
lated state or nondeterministic behavior of the underlying platform.
Sometimes, programmers use assertions specifically to check for
and abort in the face of incompatible platform configurations. In
deterministic languages like Joe-E, however, platform-specific be-
havior is mostly hidden from the program, which would reduce the
need for this pattern.

Some specification languages allow methods to have pre- and
post-conditions that are defined using the same language as the
code, and these conditions may call other methods. For instance,
in JML, a specification language for Java, specifications are only
supposed to call methods that are “pure.” JML’s notion of purity
forbids side effects but does not require determinism and places
no restrictions on what state the method’s behavior may depend
upon [15]. Since JML specifications can be compiled to assertions
and checked at runtime [8], the purity requirement is intended to
ensure that these assertions do not change the program’s semantics.

We argue that pre-conditions, post-conditions, and object invari-
ants should be deterministic as well as side-effect free. When meth-
ods are used in specifications, the specification cannot be consid-
ered fully defined unless the method is deterministic. In particular,
if the requirements on the method are predicated on external state
whose value changes from invocation to invocation, it will not be
possible to statically verify that the method satisfies its contract.
While JML’s restrictions on side effects in specifications may suf-
fice to prevent runtime enforcement from changing the semantics
of the program, static checking is more difficult than it would be if
specifications were functionally pure.

We have not implemented a tool for checking the purity of as-
sertions, but verifying the purity of some assertions would be a
straightforward extension of our techniques for methods. There are
some common patterns for assertions and specifications (such as
those that require executing methods on non-immutable objects)
for which our approach may not be applicable.

3. DEFINITIONS
Our definition of functional purity derives from the concept of

a mathematical function, a well-defined one-to-one mapping from
inputs to outputs. We consider a method in a program to be func-
tionally pure if and only if it is both side-effect free and determin-
istic.

3.1 Side-effect freeness
A method is side-effect free if the only objects that the method

ever modifies are created as part of the execution of the method.
This definition permits the method to create and modify new ob-
jects, any subset of which may be reachable from its return value,
but does not permit it to make any change that would be observable
from outside the method.

In addition to this linguistic notion of side-effect freeness, we
also require that a pure method not cause any side effects outside
the language environment, with the exception of resource consump-
tion (memory and CPU cycles). For example, it must not write to
files, communicate over the network, or print to the console. This
is necessary to soundly constrain the effects of untrusted code.



3.2 Determinism
A mathematical relation is considered a function if each distinct

input is associated with a single specific output. Any two evalua-
tions of a mathematical function with the same inputs will give the
same result. This result depends deterministically on the inputs,
and nothing else. Our determinism requirement for functions in a
program is analogous. We want any two calls with equivalent ar-
guments to a pure function to give the same result. The result must
depend only on the arguments and not on other global or thread-
local state such as the current time or the stack trace.

For numbers and other mathematical constructs, there is a well-
accepted canonical definition of what it means for two sets of func-
tion inputs to be the same, namely mathematical equality for each
argument. We need a similarly precise definition for equivalence
of arguments in programs. Element-by-element equality works for
value types, but pointers and references raise questions. Should two
calls of a method be equivalent if their arguments have the same nu-
meric values but different aliasing relationships? If they have the
same aliasing but reside at different addresses in memory?

There is not a single obviously right answer to these questions.
Determinism is thus a parameterized property: given a definition
of what it means for arguments to be equivalent, a method is de-
terministic if all calls with equivalent arguments return results that
are indistinguishable from within the language. The determinism
guarantee is only useful for calls whose arguments are equivalent
according to the definition of equivalence. The definition should
make semantically equivalent invocations (those that look equiva-
lent to the programmer or auditor) have equivalent arguments.

If the criteria for equivalence include memory layout informa-
tion such as the concrete addresses of pointers, invocations will
essentially never be equivalent, and the determinism guarantee will
be meaningless. For types that serve purely as collections of im-
mutable data, we can avoid addresses completely by comparing
purely by value, not by reference. This prevents pointer aliasing
from causing seemingly equivalent invocations to be distinct. For
example, consider a Java method that concatenates two strings. If
aliasing information is included, concat(str, str) will not be
equivalent to concat(str, str.clone()) because in the first
case both arguments refer to the same object, and in the second
case they refer to different objects. For other types (e.g., graph
nodes) that are generally compared by reference, aliasing informa-
tion may be important to include. Our equality definition (§4.1)
excludes memory layout details but includes aliasing relationships
for types where identity provides the semantic notion of equality.

4. APPROACH
Our approach to purity is based on leveraging the properties of a

deterministic object-capability language, i.e., an object-capability
language that (a) has no nondeterministic language primitives and
(b) requires a restricted capability for any access to nondetermin-
ism.

An object-capability language [18] is one with the following
properties:

• all state that can be communicated between methods is stored
in objects
• all objects can only be accessed by references
• references can only propagate by being passed as arguments

or being stored in a shared object
• references are unforgeable (for instance, the language must

be memory-safe, and it must not permit unsafe casts)
• access to references is strictly limited by lexical scoping of

variables and transitive reachability of references

In such a language, references serve as capabilities, and capabili-
ties can be granted only by explicitly passing references. For these
properties to be effective in restricting code’s effects, the global
scope must not contain any capabilities to affect program state or
the outside world. In other words, using methods and objects in the
global scope it must not be possible to have any effect on mutable
program state or external effects aside from resource consumption.

In a deterministic object-capability language, the observable
global state must never change and must be the same on every ex-
ecution. Any data returned from global methods is considered to
be part of the observable global state. This means, for example,
that no globally accessible methods can provide the time of day or
state of the filesystem, even though this data is not explicitly stored
anywhere in the global scope. A method’s view of global state will
thus be the same every time it is invoked, so globals can effectively
hold only compile-time constants. Then, since the only variables
in a method’s scope are globals and arguments, any variation in
the method’s behavior can always be attributed to differences in its
arguments.

From §3.2, we must specify when function arguments are equiv-
alent. We do so in the following section, in which the concrete
arguments to a method invocation are considered a set of named
references. For an instance method, the implicit reference to the
target object is treated as an argument named “this”.

4.1 Equivalence of reference lists
At a high level, we consider two sets of named references equiv-

alent if their reachable object graphs (including values, types, and
aliasing relationships) are isomorphic. Figure 1 gives an example;
the rules for its construction follow.

Many object-oriented languages include both reference types and
value types. Objects of reference type have an identity distinct from
their value. The language distinguishes between references that
point to the same object and those pointing to different objects with
identical contents. Any type with mutable fields is by necessity a
reference type, as changes to one instance will not affect another,
but immutable objects can also be reference types if the language
provides a way to test for object identity (such as Java’s == opera-
tor). In contrast, value types can be compared only by value; there
is no other notion of identity for these types. In Java, the primitive
types (boolean, char, and the integer and floating point types) are
value types, whereas Object and all its subtypes (including arrays)
are reference types.

For simplicity in the following formal definition, values are rep-
resented in the object graph as references to canonical instances.
One such instance exists for each distinct value of each value type.
Similarly, we treat null pointers as references to a single canonical
null object that belongs to every non-primitive type.

Let G be the set of named global (static) variables in the pro-
gram. Let A be a set of named object references (such as the ar-
guments to a method). We then define the reachable object set A∗
corresponding to the set A as the transitive closure of objects reach-
able by following references from all fields of the objects pointed to
by A∪G. (The global state of the program will be the same across
all executions, so the set of objects reachable from G won’t change.
This portion of the graph is only included in order to represent all
observable aliasing relationships.)

The object graph for the reference set A is then constructed as
follows: We create special nodes labeled Global and Local. We
construct a canonical node for each primitive value in the program,
in addition to a canonical node for null. For each reference-type
object in A∗, we construct a node labeled with its concrete type.
For variables in G or A, we add edges originating in Global and
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public class Foo {
public static byte b;
public static IntPair p;

private long myLong;
private byte myByte;

public void foo(Bar bar, Baz baz) {
// ...

}
}

public class Bar {
private IntPair myPair;
// ...

}

public class IntPair {
public int first, second;

}

Figure 1: An example of an object graph and corresponding Java class definitions.

Local respectively. These edges point to the node representing the
object pointed to by the variable and are labeled with the variable’s
name. For each field of each object in A∗, we draw a directed edge
from the node holding the reference to the node representing the
referenced object (or canonical value), labeled with the field name.

Two sets of object references are considered equivalent if they
result in identical object graphs (nodes and edges with the same
labels). Note that the object graph reflects all aliasing relation-
ships between non-value objects reachable from the set A and from
global variables.

4.2 Immutability
We also need the language to provide support for types that are

verifiably immutable. An object is immutable if its state, and the
state of all objects reachable from it, can never change during its
lifetime. Immutability is transitive: all objects reachable from an
immutable object must themselves be immutable. To statically ver-
ify purity, we need the language to provide some way to verify
that a type T is immutable, i.e., that every instance of T will be
immutable.

Objects that represent a capability to affect or observe external
state must not be considered immutable, even if their explicit state
in the language is immutable.

5. PURE METHODS
Languages that meet our requirements (§ 4) make verification of

purity easy. The condition is simple: If all parameters to a method
(including the implicit this parameter) are statically declared to
be of an immutable type, then the method is pure.

A pure method cannot cause any side effects, because it will
never be able to obtain a reference to a shared mutable object. The
only mutable objects it can access are those that it creates itself, but
any changes it makes to them are not side effects since they will not
be visible outside the method’s execution. The method is also pre-
vented from causing any effects external to the language runtime,
as all such effects would require an appropriate capability. Such
capabilities are not considered immutable and thus are unavailable
to methods with only immutable arguments.

The only state observable to the method is that in the global
scope and reachable from its arguments. Since the global scope is
constant (essentially determined at compile time), the only varying

state it can observe is from its arguments. As immutable arguments
cannot provide a view of external state, the only observable state
that immutable arguments can provide is captured in the definition
of reference-list equivalence above (§ 4.1). For a language without
any inherently nondeterministic constructs, ensuring that two invo-
cations of a method start in indistinguishable states is sufficient to
ensure that they will terminate identically.

In our approach, purity is part of the contract of a method: we
can verify that a method is pure simply by examining its type sig-
nature. This is powerful, because it means that we do not need
to inspect the implementation of the method or of other code that
it might call. Internally, it may make use of mutating operations
and impure methods. Any operation expressible in the language,
no matter how much internal mutation it contains, can be verifiably
pure if a wrapper method is written with a pure interface. We do not
need an automated tool to identify for us which methods are pure;
instead, programmers can recognize pure methods from their type
signatures. An annotation may be used on such methods in order
to ensure that they remain pure under maintenance, i.e., that their
argument types remain immutable in later versions of the program.

6. IMPLEMENTATION
The object-capability language Joe-E was designed by Mettler

et al. and specified as a technical report [16]. The contribution of
this paper is not the design of the object-capability language Joe-E,
which will be the subject of a forthcoming paper. Instead, this paper
covers our subsequent work to make Joe-E a deterministic object-
capability language and how this enables verification of purity.

Joe-E is a subset of Java; the Joe-E verifier, implemented as an
Eclipse 3.2 plug-in, checks Java source code to confirm that it falls
within the Joe-E subset. Any Java program that is accepted by the
verifier is also a Joe-E program with the same semantics, but not
all Java programs pass the verifier.

6.1 Side effects and Nondeterminism
The restrictions on globally-available side effects and nondeter-

minism are accomplished by exposing only a subset of the fields
and methods defined in the Java libraries to Joe-E code. The Joe-E
language defines a whitelist of fields and methods from the Java
libraries that Joe-E code is allowed to use; the Joe-E verifier will
reject programs that make reference to any field or method not on



Integer.getInteger(SYSTEM_PROPERTY)

System.identityHashCode(new String())

string.intern() == string

Integer.newInteger(integer) == integer

Figure 2: Several methods from the Java library are nondeter-
ministic and callable by all Java code. These are not exposed to
Joe-E code.

boolean randomBit() {

return (new Object().hashCode() % 2) == 1;

}

Figure 3: This Java method is not deterministic. It is not legal
Joe-E code, because Joe-E forbids calls to Object.hashCode().

the list. We use this mechanism to prevent Joe-E code from calling
any method that exposes the ability to observe or modify the envi-
ronment outside the JVM, provides access to nondeterminism, or
allows reading or writing of global mutable state. See Figure 2 for
examples.

6.1.1 Object identity
In Java, objects have identity: conceptually, they have an “ad-

dress”, and we can compare whether two object references point
to the same “address” using the == operator. This notion of ob-
ject identity can expose nondeterminism. As depicted in Figure 3,
Object.hashCode() exposes nondeterminism, which is incom-
patible with reasoning about the purity of a method solely by ex-
amining its type signature. We have the Joe-E verifier forbid calls
to methods such as hashCode() that expose nondeterministic rep-
resentations of object identity.

Also, String.intern()’s static object cache contains global
mutable state that is visible to Java code as a result of object iden-
tity (see Figure 4). For some types, such as String, we sidestep
the problems caused by object identity and simplify reasoning by
making the type a value type in Joe-E. This is accomplished by
prohibiting Java’s object identity comparisons on these types: e.g.,
Joe-E code is not allowed to use the == operator on Strings or
other value types. This makes our determinism guarantees more
meaningful and more useful, as the programmer does not need to
worry about aliasing relationships between variables of these types.
Otherwise, a pure method could act differently on two invocations
that the programmer might see as identical, but that differed only in
aliasing relationships. For example, a string upper-casing method
could behave differently if its argument aliases a global variable. In
Joe-E, most immutable types are also value types, allowing more
intuitive reasoning about equivalence of invocations.

6.1.2 Exceptions
We treat a thrown exception as a form of return value from a

method, since the caller can catch and obtain a reference to the
thrown object. This makes it challenging to reason about determin-
ism in Java, for two reasons.

First, every Throwable object contains a stack trace generated
when the throwable is constructed. This operation is not determin-
istic in the arguments to the throwable’s constructor, because the
stack trace stored in the throwable depends on the calling context,
which is not a function of the constructor’s arguments. Any con-
struction of an exception (which can happen implicitly) thus re-
sults in an object which in Java would be a source of nondetermin-
ism. We solve this problem by preventing programmatic access to
the stack trace. Specifically, Joe-E code is not allowed to call the
getStackTrace() and printStackTrace() methods.

boolean previouslyInterned(String s) {

String t = new String(s);

return t.intern() != t;

}

Figure 4: This Java method’s return value is not a determinis-
tic function of its input. previouslyInterned("foo") returns
true iff some other code has previously called s.intern() on
a string s such that s.equals("foo"). This is not legal Joe-E
code, because Joe-E does not allow using != on Strings.

int estimateAvailStackSpace() {

try { return estimateAvailStackSpace() + 1; }

catch (VirtualMachineError e) { return 1; }

}

Figure 5: The JVM throws a StackOverflowError when the
available stack space is exhausted, so this recursive method’s
return value is nondeterministic.

Second, the Java Virtual Machine exposes true nondeterminism
when it throws a VirtualMachineError. This occurs under a
number of exceptional conditions, some of which (like running out
of memory) can be triggered by the application. Consequently, vir-
tual machine errors are a source of nondeterministic behavior; see,
e.g., Figure 5.

This limits the guarantees we can provide: we cannot promise
that whether or not a method terminates successfully will be a de-
terministic function of its arguments, since other conditions (e.g.,
the amount of free memory) might influence whether it aborts with
a VirtualMachineError. Instead, we provide the following guar-
antee: any two calls to a method with equivalent sets of arguments
will yield equivalent results, as long as neither method aborts with
a VirtualMachineError. On the other hand, if one or both calls
throw a VirtualMachineError, then we promise nothing.

We mitigate this shortcoming by ensuring that if the JVM does
throw a VirtualMachineError, then the program will terminate
immediately—the error will propagate to the top level and no Joe-
E code will execute after the error occurs. To enforce this prop-
erty, the Joe-E verifier prohibits catching Error or any subtype of
Error. In addition, Joe-E must also prohibit the use of finally
clauses, as they allow code to execute after (and in response to) a
VirtualMachineError. See Appendix 10 for details.

6.2 Immutability
To support reasoning about purity, we want to allow the program-

mer to write user-defined classes that are verifiably immutable. The
programmer can communicate to the Joe-E verifier that class C is
intended to be immutable by declaring it to implement the interface
org.joe_e.Immutable. The verifier then confirms that C truly is
immutable by checking that all its fields are final and have a static
type that is a primitive or immutable.

Unfortunately, this is not quite sufficient. In Java, code that has
access to a partially constructed object O can read final fields of O
before they have been initialized, so reading the same object’s fields
twice might yield two different answers. To prevent this anomaly,
Joe-E places several restrictions on all constructors to ensure that
a reference to the object being constructed cannot escape from the
constructor [16]. The most relevant is that constructors are prohib-
ited from calling instance methods on the object being constructed.

Some reference types in the Java library, such as strings, are
observationally immutable but are not declared to implement the
Immutable interface. The Joe-E verifier handles these classes spe-
cially, treating them as if they did implement Immutable.



Java arrays are mutable, but are often used in situations where
their mutability is not useful or desirable, as they are the sim-
plest representation of a collection of objects. Therefore, Joe-E
introduces a class, ImmutableArray, for storing an immutable se-
quence of immutable objects. Specialized subtypes are provided
for holding primitive values without having to “box” them into ob-
jects; e.g., ByteArray holds an immutable sequence of bytes.

6.3 Verifying Purity
With our extensions, Joe-E makes it easy to reason about pu-

rity. In particular, in a Joe-E program, if all of the parameters to
a method (including the implicit this parameter) are immutable,
then the method is pure. For instance, suppose that we are decom-
pressing a compressed file from an untrusted source. We might
design the decompression interface as follows:

ByteArray decompress(ByteArray compressed)

This function will be pure, so even if the decompression code is
buggy or insecure, a malicious compressed file cannot cause it to
corrupt other application data structures. This allows us to contain
the effect of any security holes in the decompression code.

As another example, suppose that we are building election tab-
ulation software, which reads the contents of memory cards from
the voting machines in the field, parses that data, accumulates the
votes, and produces a report summarizing the tallies and winners.
The parsing, accumulation, and report-generation code might be
implemented following this interface:

String tabulate(ImmutableArray<CardData> cards)

If CardData is an immutable data structure holding the data read
from a single memory card, this function will be pure. Hence we
can be confident tabulation will be deterministically repeatable, and
that the tabulation operation cannot (even if it is buggy or insecure)
corrupt other election data.

Some caveats apply. The soundness of our determinism guaran-
tee depends on consistent behavior from the portion of the Java li-
braries that Joe-E programs are allowed to call. While it is straight-
forward to block truly nondeterministic library methods, the se-
mantics of some methods differs between Java library releases, in-
cluding useful methods that are fully deterministic within a particu-
lar version. For example, the behavior of many string and character
routines has changed between versions to reflect characters added
to the Unicode specification. For this reason, our implementation
only guarantees reproducibility between executions using the same
library version. Since Joe-E does not currently require all asser-
tions to be pure, our determinism guarantee is also predicated on
whether or not assertions are enabled. In Java, results of floating
point operations may differ between JVMs, which may cause code
to have platform-dependent behavior.

7. EVALUATION AND EXPERIENCE
Our approach is intended primarily for programmers develop-

ing new code in Joe-E with verifiable purity in mind. Since Joe-
E is intended to be as familiar as possible to Java programmers,
we wanted to understand to what extent our approach would re-
quire Java programmers to change the coding style they are used
to. We chose three Java libraries and retrofitted them (a) to pass
the Joe-E verifier and (b) to have verifiably pure methods and re-
sulting security properties. The refactoring was performed by a
programmer who had no prior experience using Joe-E or any other
object-capability language.

We give a detailed account of our experience, for three purposes:
(1) to give the reader a sense of the type and magnitude of changes

Source lines of code Num. classes Num. methods
Before After Before After Before After

AES 319 276 1 1 9 9
Voting 688 692 25 25 80 79
HTML 12,652 10,848 94 99 965 947

Table 1: Basic code metrics for the three libraries used for eval-
uation, as measured both before and after refactoring.

that were necessary, (2) to understand the programming patterns
that could potentially act as a barrier to the adoption of our system,
and (3) to evaluate the strengths and limitations of our approach to
verifiable purity. See Table 1 for the three applications we analyze.
(We used the Eclipse Metrics Plugin [25] for all code metrics.)

7.1 AES library

7.1.1 Motivation
We started with an open-source AES implementation written in

Java [6]. We sought to prove that the encrypt and decrypt meth-
ods are pure. This would then enable us to check at runtime that
these methods satisfy the inverse property, as described in Sec-
tion 2.2.

7.1.2 Changes to the codebase
First, we refactored the code to pass the Joe-E verifier. The AES

library initially contained mutable static state: it used static vari-
ables of array type to hold the S-box tables. We replaced these
with ImmutableArrays, to meet Joe-E’s requirement that all static
variables be immutable.

Second, we refactored the class to provide verifiably pure meth-
ods. Originally, the AES library’s interface had this type signature:

public AES()

public void setKey(byte[] key)

public byte[] encrypt(byte[] plain)

public byte[] decrypt(byte[] cipher)

After refactoring, the signatures for the relevant methods and con-
structors became:

public AES(ByteArray key)

public ByteArray encrypt(ByteArray plain)

public ByteArray decrypt(ByteArray cipher)

Method signatures for encrypt and decrypt were changed so
that all parameters would have an immutable type, thus making
the methods verifiably pure. This was accomplished by replacing
each byte[] array with a ByteArray. Also, because encrypt and
decrypt are instance methods on the AES class, we had to make the
AES class immutable. As an immutable class, it can no longer have
its key specified using a setter method that mutates its state. Instead,
the key is specified as an argument to the constructor. Immutabil-
ity of AES also required making all instance variables final and
immutable. To accomplish this, we had to remove debugging trace
information from the class. In a case where preserving such in-
formation is important, a suitable solution would be to return from
the top-level methods an object containing both the original return
value and the debugging trace for that method call.

Notice that we also changed the return type of the encrypt and
decrypt methods to an immutable type. This was not strictly nec-
essary for verifying the purity of the AES library, but it helps clients
of the AES library write their own pure methods that manipulate
data returned from the AES library. In general, returning an im-
mutable data structure helps verify purity of other parts of the code.



After our refactoring, clients of the AES library are able to check
that decryption is the inverse of encryption by inserting

k.check(x);

before every call to k.encrypt(x), where instance k is of type
AES. The check method can be defined as follows:

public void check(ByteArray x) {

assert(decrypt(encrypt(x)).equals(x));

}

Since this method is pure, inserting the call to check cannot change
the program’s behavior. Moreover, this call ensures that encrypt
and decrypt satisfy the inverse property for every value x that is
ever encrypted by any client of the AES library.

7.2 Voting machine

7.2.1 Motivation
Next, we examined the serialization and deserialization code of

an experimental voting machine implementation [24]. We refac-
tored the code to make serialization and deserialization pure. Our
goal was to confirm at runtime that deserialization is the inverse of
serialization, following the pattern described in Section 2.2. This
ensures that all votes that are successfully recorded will be read
back correctly during vote tallying.

7.2.2 Changes to the codebase
Nearly all changes made were simply replacing standard Java

arrays with Joe-E immutable arrays. Another common change was
adding the Immutable interface to classes that were already ob-
servationally immutable. (This required nothing more than adding
“implements Immutable” to the class declaration.)

Another modification involved the use of a monotonically in-
creasing serial number to filter out duplicate ballots. The last re-
ceived serial number was stored as a static field inside the
BallotMessage class. Inside the deserialization method, the se-
rial number of the ballot was compared with the static value of the
most recently received serial number; if the serial number was al-
ready received, the deserialization method would return null. With
detection of duplicate ballots written in this way, the deserialization
is not deterministic. To fix this, we separated the deserialization
functionality from duplicate ballot suppression.

The only other significant change necessary was to require that
a Ballot received all of its Races upon construction. Prior to
refactoring, the Ballot class exposed a method addRace(Race

r). This method had to be removed in order to make the Ballot

class immutable.
The method that we wished to make verifiably pure serves to

check the serialization. The method is called after the object has
been serialized to an array of bytes, and tests that the serialized
form deserializes to match the original ballot. Its signature was
initially:

public static boolean

deserializesTo (byte[] serialized,

BallotMessage bm)

After refactoring, the method was changed to use a ByteArray

instead of byte[]. The actual deserialization, which is performed
by a constructor that takes a ByteArray, is also verifiably pure.

7.3 HTML parser
Our third application, an HTML parser [20], was a much larger

and more instructive undertaking. Since our modifications to this

library were significant, we ensured that it retained its functional-
ity by verifying that our modified version and the original version
produced the same results when run on a corpus of HTML test
cases [11].

7.3.1 Motivation
Our primary goal was to refactor the code to make the top-level

parse method pure. From a security perspective, a pure parse
method is valuable for any system in which parses need to be per-
formed on behalf of different users or using data from different
sources. An example of this is on a web forum, where posts to the
forum must be sanitized to prevent cross-site scripting attacks. A
pure parse method together with a pure sanitization routine ensures
that there can be no accidental data contamination between differ-
ent posts, and that no private information about a user can be acci-
dentally leaked into another post or to another user. Additionally, a
pure parse method guarantees that a given parse is reproducible on
any machine under virtually any circumstances.

Before refactoring, the top-level method signature, which resides
in the Parser class, was the following:

public NodeList parse (NodeFilter filter)

throws ParserException

Originally, neither the Parser class nor the NodeFilter class was
immutable, and hence this method was not verifiably pure.

7.3.2 Mutable static state
We removed several instances of mutable static state from the

HTML library, so that the code would pass the Joe-E verifier. For
example, originally the only way to pass options to the parser was
to set a global flag, parse, and then restore the flag, as follows:

boolean oldValue = SomeClass.SOMEFLAG;

SomeClass.SOMEFLAG = true;

try { parser.parse(); }

finally { SomeClass.SOMEFLAG = oldValue; }

This pattern seems to have been used to avoid propagating a con-
figuration parameter through several levels in the call hierarchy.
However, this use of global variables makes it harder to see how
the flag is specified, renders the code thread-unsafe, and violates
Joe-E’s prohibition on shared mutable state.

We eliminated this pattern by augmenting the API with a top-
level parse method that takes an extra argument and passes it as
necessary to other parts of the program. The original top-level
parse method remains, using a default value for the flag.

The original codebase also violated Joe-E restrictions by printing
to System.out for debugging and reading the default locale us-
ing java.util.Locale.getDefault(). Using Locale objects
in Joe-E code is not problematic, but the default locale is system-
dependent and therefore non-deterministic. We instead modified
the API to require that a Locale be passed as a parameter to ob-
jects needing access to the locale.

7.3.3 Instance method calls in constructors
We found many constructors that called other instance methods

during their execution. As discussed earlier, Joe-E prohibits this
(see § 6.2), so we had to eliminate all calls to instance methods
from within constructors. This was bothersome—it was one of the
few changes we had to make that did not reflect poor or nonstan-
dard style in the original code—but fortunately we were able to
work around the problem in every case by inlining the instance
method, replacing the instance method with a static method, or us-
ing a factory method instead of a constructor. Nonetheless, this



String html = getHtmlStringFromSomewhere();
Parser p = new Parser(html);
NodeList list = p.parse(null); // null NodeFilter
// do something with the parse "tree" in list

Figure 6: A typical use of the Parser class. The HTML doc-
ument is supplied to the constructor as a string. Then, the
parse method is called with a NodeFilter as a parameter.
A NodeList is returned, which contains a list of the top-level
nodes from the HTML document.

experience suggests that the restriction on calling instance methods
from constructors may place an undue burden on Joe-E program-
mers. We are currently considering less restrictive alternatives for
future Joe-E releases.

7.3.4 Immutable classes
Once the HTML parser’s code passed the Joe-E verifier, we refac-

tored the Parser and NodeFilter classes to be immutable.
The original Parser class contained a Lexer as an instance vari-

able. In order to make the Parser class immutable, this instance
variable had to be removed due to the fact that a Lexer is inherently
mutable. We refactored the code to construct and use a Lexer in-
side the top-level parse method. A typical use of the Parser class
can be seen in Figure 6.

Making the classes that implement the NodeFilter interface
immutable was straightforward, except for the IsEqualFilter

class. This required significant effort due to the fact that this class,
which tests whether two nodes are equivalent to each other, con-
tained an instance variable of type Node. As a result, all classes that
implemented the Node interface had to be made immutable, which
necessitated removing all setter methods from any Node subclass
and requiring that all fields were set upon construction of any sub-
class of Node.

Refactoring the Node subclasses to be immutable proved diffi-
cult due to a nonstandard construction pattern. The library used
a prototype construction pattern to support the creation of custom
parsers that recognize varying sets of HTML tags4: before parsing,
the caller could register a set of Node prototypes. When the Lexer
needed to construct a new Node, it would clone a prototype and
then overwrite the relevant fields of the clone using setter methods.

We refactored the code to use a more standard construction pat-
tern in which Nodes are constructed using a constructor that takes
an argument for each instance field that needs to be set. Minor
functionality was lost with this change, as it is no longer possible
to create a custom NodeFactory (without creating a custom class
implementing the NodeFactory interface) to recognize a different
set of nodes.

Also, to make Nodes immutable, we had to split the Page class
into two classes. Before refactoring, the Page class conflated two
distinct purposes. It was used by both the Lexer and by the Node

classes. The Lexer used a Page instance during lexing to main-
tain information about the current position of the cursor in the page
and to get and unget characters. This inherently requires a mutable
class. On the other hand, the Node classes only used the Page ob-
ject for finding out the line and column numbers for characters in
the page. This information is fixed and will never change after con-
struction of a Node. To reflect this fact, we created an immutable
class called PageInfo to hold this information and extracted it
from the mutable Page class. Now, when the Lexer creates a Node,

4For example, one could create a parser that recognizes only img
tags, and treats all other tags as generic tags with no hierarchical
structure.

it obtains the PageInfo from the Page and passes it to the Node’s
constructor.

As illustrated above, immutability is a property that necessarily
spreads through related classes. We noticed similarities between
these immutable data structures and those used in functional pro-
gramming. For instance, immutable data structures must be con-
structed from the bottom up and hence are necessarily acyclic.

We also refactored the parse method to make the parse tree it
returns be immutable. This is not necessary for the purity of the
parse method, but it aids the creation of other pure methods that
use the data structure returned by the parse method, since callers
of the parse method can directly pass the parse tree it returns as a
parameter to other pure methods.

7.4 Summary of patterns
Using a strictly-functional style throughout a program is the most

reliable pattern for attaining verifiable purity, as it ensures that ev-
ery method will be pure. Such a strict approach is generally not
necessary to achieve useful purity guarantees. None of the three
applications that we refactored were written in an exclusively func-
tional style, either before or after our modifications. Our approach
to purity requires only that immutable types (and thus functional
programming style) be used for the interface of a pure function, al-
lowing its internal algorithms to be written in an imperative fashion
if the programmer so desires.

Objects that have cycles (for example, a tree with parent pointers
or a doubly-linked list) pose a challenge for our approach. A cyclic
object graph, even if it is observationally immutable once fully con-
structed, cannot be statically verified as immutable in our system.
We may therefore be unable to verify purity for methods that use
such objects.

Joe-E required us to eliminate the use of mutable static state and
pass parameters explicitly as arguments instead of using mutable
global variables. We found that this brought our code closer to a
functional style and had benefits of its own.

We believe that new code can take better advantage of Joe-E’s
guarantees if the class hierarchy is designed with immutability in
mind. If part of a class is immutable but the rest of the class is
not, the entire class must be treated as mutable. Consequently, if
a concept has separable mutable and immutable aspects, it may be
helpful to represent it as two separate classes.

7.5 Waterken Server
The Waterken server is an extensible web server designed for

building distributed web services [9]. Waterken is implemented in
a mixture of Joe-E and Java. The Joe-E code was not retrofitted
from Java to Joe-E, as in our previous examples, but was designed
and implemented following object-capability principles. The Joe-
E portion is substantial, comprising 8,246 source lines of code and
132 classes.

We counted the number of pure methods in the Waterken Joe-E
code. (See Table 2.) Our results are somewhat surprising: a large
fraction of methods (17%) and an even larger fraction of construc-
tors (29%) are verifiably pure. While the code was written in an
object-capability style, verifiable purity was not an explicit goal.
This suggests that verifiable purity can (and does) occur as a natu-
ral consequence of object-capability discipline.

8. DISCUSSION
One advantage of our approach is that it can facilitate reasoning

about side-effects and data dependencies for methods even if they
do not strictly meet our requirements to be functionally pure. Since
the accessible data and possible effects of a method are limited to



Pure Total % pure
Methods 89 524 17%
Constructors 37 128 29%

Table 2: The number of pure and impure methods and con-
structors in the Waterken Server.

objects reachable from its arguments, these effects are still bounded
even if some arguments are mutable. In particular, the method can
only mutate objects that are reachable from its non-immutable ar-
guments. Typing and capability reasoning can limit this set to a
small portion of the in-memory objects in the program, e.g., the
values in a single array of ints, or the private instance fields of an
object.

One can sometimes use these bounded effects to achieve purity
properties from methods that are not individually pure. For in-
stance, consider the following set of operations on a non-immutable
object o:

T o = new T(a);

o.f(b); o.g(c);

... // do something with o

If the constructor is pure and the arguments a, b, and c are all im-
mutable, then the state of o after this sequence of operations will be
a deterministic function of a, b, and c and no other side effects will
occur. We will refer to a sequence of invocations with this property
as a functionally pure sequence.

If all of the inputs are known in advance, the sequence above can
be written as a single verifiably pure function; for this example, we
would have:

T pure(A a, B b, C c) {

T o = new T(a);

o.f(b); o.g(c);

return o;

}

The more interesting case is where the inputs are not known in
advance, such as if some of them come from interactions with a
user. In this case, some of the inputs depend on information re-
ceived from the program, e.g., return values from invocations on o.
This case can be expressed as a sequence of verifiably pure method
calls if it is refactored to use a purely functional style. Specifically,
we would refactor T to be immutable and replace each mutating
instance method of T with one that returns both the original return
value and a new object that has the modifications applied.

For cases in which making T immutable is impractical or cum-
bersome, we need a new set of rules sufficient to verify such a se-
quence is functionally pure. It is safe to add return values to the
first scenario above, as long as they do not enable modifications to
the object’s internal state. This limitation can easily be verified by
requiring the return values to be immutable. (Thrown exceptions
would also be a concern, but Joe-E already requires all throwables
to be immutable). This set of restrictions is not as trivial to check
as the ones needed for individual methods to be verifiably pure, but
it allows for reasoning about useful properties of non-immutable
objects.

The pattern allows for purity to be demonstrated in event-based
interactive systems, such as a voting machine. Each voter’s actions
constitute a stream of events that should be interpreted as they ar-
rive to produce the voted ballot. Pure sequences can allow us to
verify that the voted ballot and behavior of the voting machine are
a deterministic function of the sequence of input events.

Functionally pure sequences also occur in Waterken’s implemen-
tation of deterministic server processes that react to input events.
Each event causes mutations in the internal state of a handler ob-
ject dedicated to that event’s connection. Because these mutations
are local to the per-connection object, the behavior of each server
process is a deterministic function of the sequence of input events
it receives, even though each individual call to the event-processing
method is not verifiably pure.

9. RELATED WORK
Object-capability languages have a long history [18]. Most of

these languages are more functional in style than the Joe-E subset
of Java, making it easier to limit side effects. In the E language,
the Functional auditor examines an object to check that “every
method on the object has no side effects and produces an immutable
result depending solely on its arguments” [28]. The auditor verifies
this property using runtime introspection on an object; in contrast,
we verify it statically for individual methods. In this paper, we
build upon Joe-E [16], another object-capability language designed
by some of the authors of this paper in related work, but we expect
that many of our techniques could be applied to many other object-
capability languages as well.

We were inspired by the notion of “environment-freeness” [24],
which is essentially the determinism portion of our notion of purity.
Environment-freeness was used to verify determinism of a decod-
ing operation and for fail-stop enforcement of the inverse property.

Most previous work on purity in imperative languages has fo-
cused on side-effect freeness and paid little attention to determin-
ism. The definition of side-effect free used has generally been
weaker than ours, as it has included only objects in memory and
has excluded state external to the program. For legacy code, Roun-
tev [21] and Salcianu and Rinard [23] provide pointer-based anal-
yses that recognize side-effect free methods. Both address only
in-language side effects; neither mentions any special treatment for
native methods, which can cause external side effects. Analysis-
based approaches have the advantage of being directly applicable
to legacy code. Language-based approaches, on the other hand,
provide more guidance for programmers in writing side-effect free
methods.

In Joe-E, we make use of class immutability both in enforcement
of determinism and for side-effect freeness. Specific classes in the
standard Java type system are considered immutable; standard Java
type safety and final field enforcement ensures that objects of such
classes are never mutated after construction. An alternative is to use
an extended type system that treats some references or instances as
read-only while allowing others to be mutated. The C++ const

qualifier for pointers is the most well-known example of this. It is
a compilation error to assign the fields of, or invoke a non-const
method on, a const reference. Its use in preventing side effects is
limited because the restrictions are not transitive; it is possible to
modify an object contained in a field reached via a const pointer.
A transitive analogue of this was introduced by the KeyKOS oper-
ating system [10] as a “sensory key”; such a key prohibits writes
and also causes all keys retrieved through it to be sensory. This
concept is also found in the type system of a few programming lan-
guages to improve reasoning about immutability and side effects.
Such types allow for documentation and modular checking of effect
restrictions on a per-function basis.

Ieurusalimschy and Rodriguez [12] use such a qualified type to
enforce side-effect freeness in the SmallTalk-like language School.
Methods annotated to be side-effect free are type-checked with all
arguments and the instance pointer implicitly marked with an old

qualifier. This qualifier prevents writes to the fields of old ob-



jects. The type checker only allows invocations of side-effect free
methods on old objects, and treats the return values from all such
invocations as old. This ensures that the only non-old (and thus
mutable) objects that can be used by the method are ones it cre-
ates itself. The paper makes no mention of rules for dealing with
mutable objects in the global scope or external side effects; their
emphasis on soundness would suggest that School has neither. The
Javari [26] type system provides similar qualifiers for Java, but in-
stead of having a side-effect free annotation, Javari uses explicit
readonly qualifiers as a transitive, sound version of C++’s const.
Like C++, Javari provides a way for fields of a class to be declared
as exempt from the readonly restrictions.

In addition to a sound, transitive version of const with no escape
clauses for mutable fields, the D language [5] provides an instance-
immutability qualifier invariant that can be used to achieve func-
tional purity. Functions marked with the pure keyword must have
only invariant arguments, can only read invariant global state,
and can only call other pure methods. Their compiler restricts
invariant variables in the global scope to constant values that can
be computed by the compiler5, ensuring determinism. While this
approach avoids the need to eliminate mutable state and determin-
ism from the global scope, there is a substantial cost in expressivity
as it prevents pure functions from making any use of impure func-
tions and methods. The result is essentially of a partition of the
program into imperative and purely functional portions, whereas
our approach allows pure functions to make full use of the rest of
the program, limited only by the references they hold.

The increased convenience of reference immutability (const or
readonly) over class immutability is attractive, as one can just
use the type qualifier with existing classes rather than modifying
the type hierarchy. However, class or instance immutability is nec-
essary to ensure determinism in a concurrent program, as other-
wise a mutable alias can be used to concurrently modify the object.
For non-concurrent programs, reference immutability would be ad-
equate provided that the global scope can only store immutable
references. As a general mechanism for defensive programming,
reference immutability can only serve to protect the originator of
a reference from unwanted modifications; the recipient of an im-
mutable reference may still need to make a defensive copy.

Instance immutability, like provided in D, is an interesting alter-
native to class immutability that deserves further exploration. For
Java, however, the lack of type safety for generics is likely to be
an issue. For immutable classes, we perform runtime checks to
ensure that the elements placed in an ImmutableArray are actu-
ally immutable; this would not be possible with a purely compile-
time invariant type qualifier as would be required to preserve
full compatibility with Java.

Spec# [3] and JML [7, 15] are extensions to C# and Java that al-
low the programmer to specify invariants on functions and classes.
They follow Bertrand Meyer’s suggestion that classes and methods
should have a contract specified by invariants [15]. They support
annotating methods with the pure attribute, but purity as defined
for JML includes only side-effect freeness and not determinism.

In strictly functional languages, like Haskell, nearly all functions
are pure. Monads can be defined to allow writing in a more imper-
ative style, in which each operation takes an input state and re-
turns a monad instance that wraps the result along with auxiliary
information such as side effects [27]. The monad type defines an
operator for sequencing such invocations to obtain a final result;
syntactic sugar makes this look like a sequence of imperative state-

5The D compiler can perform a substantial amount of computation
to determine these values, unlike Java’s, which only pre-assigns
literal constants.

ments. While some monads provide a way to retrieve a sequence’s
final result integrated with any auxiliary information, other mon-
ads do not. They are “one-way”: once a value is wrapped with
the monad, it never comes out. The I/O monad is an example. All
functions that potentially expose nondeterminism or cause external
side effects use this monad, which allows them to be recognized as
potentially nondeterministic. All functions whose return type does
not mention the IO monad are functionally pure. While monads
provide a means to use effects in Haskell, the language is primarily
oriented at the functional style. In contrast to a mechanism for im-
perative patterns in a functional language, our approach is focused
on being able to recognize pure methods in an otherwise impera-
tive language. This reduces the changes needed to existing code
and programming patterns.

Other systems have mixed imperative and functional program-
ming styles to varying degrees. The Eiffel language [17] separates
what it calls commands and queries. Commands may have side
effects, while queries are supposed to be side-effect free. This is,
however, only a convention; it is not enforced in any way. Similarly,
both Euclid [14] and SPARK [2] define two distinct constructs for
routines: procedures can have side effects, while functions are only
able to compute a value (and thus are guaranteed to be free of side
effects). In Euclid, functions can only import variables read-only,
which prevents side effects and ensures determinism if the imported
variables (which may be modified elsewhere) are treated as addi-
tional arguments. In SPARK, annotations on procedures specify ex-
actly which variables can be modified by the procedure, and which
variables their modifications are derived from. This and other in-
formation flow policies are verified by the SPARK Verifier.

Jif [19] extends Java with label-based information flow check-
ing. Variable declarations are annotated with labels that indicate
an owning principal and a policy for data stored in the variable.
The policy can specify (a) the principals whose data the variable
may depend on and (b) those whose data are allowed to affect the
information stored in the variable. These restrictions are enforced
statically, in cases where it is possible to statically guarantee that
the policy is followed, and dynamically, in cases where it is not.
As a special case, it is possible to specify data flow restrictions
that ensure that a particular method is pure. In contrast, while our
approach does not allow for the rich policies expressible in Jif, ob-
taining purity in Joe-E does not require the explicit specification of
principals or policies.

10. CONCLUSIONS
Verifiable purity is useful for verifying many kinds of high-level

security properties. A language with appropriate characteristics
can greatly simplify the task of writing verifiably pure code. By
combining determinism with object-capabilities, we describe a new
class of languages that allow purity to be achieved in largely imper-
ative programs. As such a language, Joe-E allows programmers to
flexibly leverage verifiable purity while still using imperative algo-
rithms in a familiar language.
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APPENDIX: FINALLY CLAUSES
Figure 7 shows how to return a nondeterministic value without
explicitly catching an Error by using a finally clause instead.
The freemem() method tries to allocate larger and larger arrays of
doubles until triggering an OutOfMemoryError. This causes the
finally clause to execute, which then throws an IntException

that hides the pending Error. The IntException contains nonde-
terministic state (how many arrays could be allocated before run-
ning out of memory), which is extracted from the exception and
returned by nondet().

Fortunately, Joe-E’s prohibition of the use of finally does not
reduce expressivity: Joe-E code can explicitly catch Exception,
which allows the catching and appropriate handling of any non-
Error throwable in the Java library.


